# ArrayMiner™ ClassMarker Tutorial

Version 3.0



## 1. Introduction

ArrayMiner<sup>™</sup> ClassMarker is a class marking and prediction tool that enables users to understand what differentiates samples in various classes (diseases, treatments...) at molecular (gene) level, ie to identify markers of the classes. These markers can then be used to predict the class of unknown samples.

# 2. Running a cross validation

Open the file named "DataSet\_A\_AllClasses.csv" using the open file menu or the tool bar button.



Figure 1

Choose the Class Marker option by clicking on the third tab of the previous figure. Click on the start button. The following figure will appear showing a heat map view of the data.



Figure 2

|                                          | , <b>o</b>                                                                                                                        |                      | nere main gra                                                                                                                              | me window                                                                                                            |                |              |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------|--------------|
|                                          |                                                                                                                                   |                      | Master                                                                                                                                     |                                                                                                                      |                |              |
|                                          | Log2 activity scal                                                                                                                | e:                   |                                                                                                                                            |                                                                                                                      | N/A            | Find         |
| Filter                                   | Reorder                                                                                                                           | ( 8.0)               | (-1.1 +                                                                                                                                    | -1.1)                                                                                                                | [+8.0 )        |              |
| ross-                                    | val Train/Test                                                                                                                    | x 🦲                  | 12.0                                                                                                                                       | IO px1                                                                                                               |                |              |
| Us                                       | ed N T Ren                                                                                                                        | nove Link 🗍 Join Lir | split Clas                                                                                                                                 | s Class:Br                                                                                                           | ain_MD, 10 san | ples         |
|                                          | ÷                                                                                                                                 |                      |                                                                                                                                            |                                                                                                                      |                |              |
|                                          | fore Filter: Fold Char                                                                                                            | vae – 121 Abcolut    | . [bange - 2132]                                                                                                                           | AFEY-BOR-                                                                                                            |                |              |
| <u> </u>                                 | nore miler. Fold cha                                                                                                              | ige = 12.1 Ab30100   | - chunge - 2152x                                                                                                                           | All                                                                              |                | 468.000      |
|                                          | $\sim$                                                                                                                            | $\sim \sim$          | $\sim$                                                                                                                                     |                                                                                                                      | $\sim$         | 440.000      |
|                                          |                                                                                                                                   | <b>v</b>             | -                                                                                                                                          |                                                                                                                      |                |              |
|                                          |                                                                                                                                   |                      |                                                                                                                                            |                                                                                                                      |                |              |
|                                          |                                                                                                                                   |                      |                                                                                                                                            | V                                                                                                                    |                | -1969.000    |
| A                                        | fter Filter: Fold Chanc                                                                                                           | re = 3.1 Ab solute C | hange = 0.467                                                                                                                              |                                                                                                                      |                |              |
|                                          |                                                                                                                                   |                      |                                                                                                                                            |                                                                                                                      | ~ ~            | -0.218       |
| <b>`</b>                                 | ~ ~ v                                                                                                                             | $\mathbf{V}$         | $\sim$                                                                                                                                     | - W                                                                                                                  |                | -0.685       |
| Use                                      | Log Thre                                                                                                                          | shold Max 10000      | 0.0                                                                                                                                        | Min Fold Change                                                                                                      | 0.0            | 1            |
| Rei                                      | ect NA Data Thre                                                                                                                  | sheld Min -1000      | 00.0                                                                                                                                       | Min Absolute Change                                                                                                  | 0.0            | 1            |
|                                          |                                                                                                                                   |                      |                                                                                                                                            |                                                                                                                      |                |              |
|                                          |                                                                                                                                   |                      |                                                                                                                                            |                                                                                                                      |                |              |
|                                          |                                                                                                                                   |                      |                                                                                                                                            |                                                                                                                      | Same Data      | For Clusteri |
| A<br>Cene                                | s Experiments                                                                                                                     | Valid Genes: 7       | 129 out of 7129                                                                                                                            |                                                                                                                      | Jave Data      |              |
| ▲<br>Cene<br>m                           | s Experiments<br>Name                                                                                                             | Valid Genes:71       | 129 out of 7129<br>Description                                                                                                             |                                                                                                                      | Reject Reaso   | on           |
| A<br>Cene<br>m                           | S Experiments<br>Name<br>AFFX-BioB-5_at                                                                                           | Valid Genes: 7       | Description<br>AFFX-BioB-S_at                                                                                                              | iendogenous control)                                                                                                 | Reject Reaso   | on           |
| Cene<br>m<br>1<br>2<br>3                 | S Experiments<br>Name<br>AFFX-BioB-5_at<br>AFFX-BioB-M_at<br>AFFX-BioB-3_at                                                       | Valid Genes: 7       | 129 out of 7129<br>Description<br>AFFX-BioB-5_at I<br>AFFX-BioB-M_at<br>AFFX-BioB-3_at                                                     | (endogenous control)<br>(endogenous control)<br>(endogenous control)                                                 | Reject Reaso   | on           |
| Cene<br>m<br>1<br>2<br>3<br>4            | S Experiments<br>Name<br>AFX-BioB-5_at<br>AFFX-BioB-5_at<br>AFFX-BioB-3_at<br>AFFX-BioB-3_at                                      | Valid Genes: 71      | 129 out of 7129<br>Description<br>AFFX-BioB-5_at<br>AFFX-BioB-M_at<br>AFFX-BioB-3_at<br>AFFX-BioC-5 at                                     | endogenous control)<br>(endogenous control)<br>(endogenous control)<br>fendogenous control)                          | Reject Reaso   | on           |
| Lene<br>m<br>1<br>2<br>3<br>4<br>5       | s Experiments<br>Name<br>AFFX-BioB-5_at<br>AFFX-BioB-3_at<br>AFFX-BioB-3_at<br>AFFX-BioC-5_at<br>AFFX-BioC-3_at                   | Valid Genes: 71      | 129 out of 7129<br>Description<br>AFFX-BioB-5_at<br>AFFX-BioB-3_at<br>AFFX-BioC-5_at<br>AFFX-BioC-5_at                                     | (endogenous control)<br>(endogenous control)<br>(endogenous control)<br>(endogenous control)                         | Reject Reaso   | n            |
| Cene<br>Im<br>1<br>2<br>3<br>4<br>5<br>6 | S Experiments<br>Name<br>AFFX-BioB-5_at<br>AFFX-BioB-M_at<br>AFFX-BioB-3_at<br>AFFX-BioC-5_at<br>AFFX-BioC-5_at<br>AFFX-BioC-5_at | Valid Genes: 7       | 129 out of 7129<br>Description<br>AFFX-BioB-S_at<br>AFFX-BioB-3_at<br>AFFX-BioC-3_at<br>AFFX-BioC-3_at<br>AFFX-BioC-3_at<br>AFFX-BioC-3_at | (endogenous control)<br>(endogenous control)<br>(endogenous control)<br>(endogenous control)<br>(endogenous control) | Reject Rease   | on           |

The next step is to specify filter values for the raw data. Click on the filter button and the following figure will appear.

Figure 3

Change the values of the filter to match the following figure. The values are located in the center of the window. There are six of them :

- Use log [Set it to Yes]: Apply a log transformation to all measurements
- Reject N/A Data [Set it to No]: Reject a gene with missing values
- Threshold max [Set it to 16000]: The maximum value of the threshold
- **Threshold min** [Set it to 100]: The minimum value of the threshold
- **Min fold change** [Set it to 5]: The minimum value of the ratio between the maximum and the minimum measurements of a gene to keep it in the analysis
- **Min absolute fold change** [Set it to 500]: The minimum absolute difference between the maximum and the minimum measurements of a gene to keep it in the analysis



Figure 4

You can view how the filter transforms each gene by clicking on the appropriate line in the bottom table. There should be now 4326 valid genes out of 7129. (Information drawn in the center of the screen).

Quit the filter mode by clicking one more time on the "Filter" button.

Click on the "Cross-Val" button to start analysis. A parameter box will appear as shown in the following figure.

| Double click on one          | ClassMarker paran | neters           |
|------------------------------|-------------------|------------------|
| ? ArrayMin                   | er Parameters     |                  |
| ltem s                       | Current value     | Newvalue         |
| Maximum number of markers p  | e 40              | 40               |
| Number of markers per couple | 20                | 20               |
| Allow multi-class markers    | No                | No               |
| Use k–NN classification      | No                | No               |
|                              |                   |                  |
| √ Ok                         | 🕆 Reset           | Cancel (2) Abort |

Figure 5

There are five options available. Change them to match the values of the previous figure.(Double click on a value to change it)

- **Maximum number of markers** [Set it to 40]: This will limit to this value the number of markers used to differenciate a class.
- **Number of markers per couple** [Set it to 20]: This will limit to this value the number of additional markers per couple of classes.
- Allow multi-class markers [Set it to No]: This will enable/disable the multiclass analysis of the data.
- Use k-NN classification [Set it to No]: When set to yes, the vote is computed using the k-Nearest-Neighbour algorithm.

Click on OK. After a short computation time a new tab will appear in the main window named "Result 1".



Figure 6

This tab is the result of the previous analysis, you can change its name by double-clicking the name. As depicted in the previous figure, red crosses show the cross validation failures for each sample. By scrolling vertically, you can scan the group of markers discriminating each class. You can switch to different visualization mode by clicking on the "Heat", "Curves", "3D", and "Info" buttons.

As shown in the previous figure, there are four failures in the last class. You can easily inform the algorithm to ignore the class in the computation. Return to the master tab by clicking on it and select the last class named "Brain\_PNET" by clicking on it in the class selection area located just above the heat map as shown in the next figure.



Figure 7

Click on the checkbox "Used" to uncheck it. This will change the class status to unused. The class is now dashed as shown in the following figure.





Click one more time on the "Cross-Val" to start a new analysis, click OK in the parameters box and wait for the analysis to complete.



Figure 9

There is now only one cross validation failure as shown in the previous figure (There is only one red cross). You can also try to keep the last class (Brain\_PNET) and use the multi-class possibilities of the algorithm.

To do so, return to the master tab by clicking on it. Select the last class, check the "Used" check box, you should obtain the following figure.



Figure 10

Click one more time on the "Cross-Val" button. When the parameters box appears, change the multi-class option to yes as shown in the following figure.

|                              | ClassMarker paran         | neters                             |
|------------------------------|---------------------------|------------------------------------|
| Whether markers n            | ay discriminate more than | one class against other class(es). |
| ? ArrayMin                   | er Parameters             |                                    |
| tems                         | Current value             | Newvalue                           |
| Maximum number of markers pe | 40                        | 40                                 |
| Number of markers per couple | 20                        | 20                                 |
| Allow multi-class markers    | No                        | Yes                                |
| Use k–NN classification      | No                        | No                                 |
| √ Ok                         | 🖬 Reset 📿                 | Cancel 👔 Abort                     |

## Figure 11

At the end of the analysis, you should receive the following result.





There are three cross-validation failures, but thanks to the multi-class algorithm, we now considered the full dataset.

## 3. Running a Train and Test analysis

Open the file named "ALL\_AML\_TrainAndTest\_AllClass.csv" using the open file menu or the tool bar button.

|                         | New Project                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classic Clustering Gaus | ssian Clustering ClassMarking and Prediction                                                                                                                                                                                                                                                                                                                                                                                |
| Classic Clustering Cau  | ClassMarking and Prediction ClassMarking and Prediction Identifies genes that make samples of one class (disease, treatment,tissue) different from samples in one or more other classed. Main benefits: Capable to find markers of couples of classes, revealing common biological phenomena Highly intuitive graphical interface offers data manipulation of unprecedented ease. Built-in cross-validation and train&diest |
| Quit                    | Cancel Start                                                                                                                                                                                                                                                                                                                                                                                                                |

Figure 13

Choose the Class Marker option by clicking on the third tab of the previous figure. Click on the start button.

You should view the following figure.



Figure 14

As for the "Cross-Validation" analysis, you have to first define the filter values for your data by setting them in the filter mode. Specify the same values as in the previous tutorial. Note that the filter default values are set to the last used ones, so the previous figure may have some genes filtered out (light cyan colored) depending on the filter values used the last time.

The data are separated into four classes.

- ALL-Train
- AML-Train
- ALL-Indep
- AML-Indep

To facilitate the viewing of the data, it could be interesting to switch the position of the AML-Train with the ALL-Indep to obtain the classes in the following order :

- ALL-Train
- ALL-Indep
- AML-Train
- AML-Indep

To obtain this order, switch to the reorder mode by clicking on the "Reorder" button located in the top left part of the window. You will obtain the following figure.

|                                                                                                    |                   |                                                                                       | ain graph                                          | ic window                                                                             |                         |     |
|----------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------|-----|
|                                                                                                    |                   |                                                                                       | laster                                             |                                                                                       |                         |     |
| Log2                                                                                               | activity scale: 📘 |                                                                                       |                                                    |                                                                                       | 📕 📕 N/A 🔲 🛛 Fi          | nd  |
| Filter Rec                                                                                         | rder ( 8.0)       |                                                                                       | (-1.1 +1.)                                         | 0                                                                                     | [+8.0]                  |     |
| ross-val Trair                                                                                     | n/Test            | x 😑                                                                                   | 7.10 p                                             | ×I                                                                                    |                         |     |
| Used N T                                                                                           | Remove Lini       | k Join Link                                                                           | Split Class                                        | Clas                                                                                  | s:ALL-Train, 27 samples | -   |
|                                                                                                    | •                 |                                                                                       |                                                    |                                                                                       |                         | _   |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
| ALL-Train                                                                                          |                   | AML-Train                                                                             | ALL-Indep                                          |                                                                                       | AML-Indep               |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    | 1                 |                                                                                       |                                                    | 1                                                                                     |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    | -                 |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
|                                                                                                    |                   |                                                                                       |                                                    |                                                                                       |                         |     |
| ALL-Train                                                                                          |                   | AML-Train                                                                             | ALL-Indep                                          | Ļ                                                                                     | AML-Indep               |     |
| ALL-Train                                                                                          |                   | AML-Train                                                                             | ALL-Indep                                          | Ļ                                                                                     | AML-Indep               |     |
| ALL-Train<br>Apply Changes                                                                         | Reset Positio     | AML=Train                                                                             | ALL-Indep                                          | Ļ                                                                                     | AML-Indep               |     |
| ALL=Train<br>Apply Changes                                                                         | Reset Positio     | AML-Train                                                                             | ALL-Indep                                          |                                                                                       | AML-Indep               | •   |
| ALL-Train<br>Apply Changes                                                                         | Reset Positio     | AML-Train                                                                             | ALL-Indep                                          |                                                                                       | AML-indep               | ) • |
| ALL-Train<br>Apply Changes<br>Up                                                                   | Reset Pasitio     | AML-Train                                                                             | ALL-Indep                                          | Experiment                                                                            | AML-Indep               | ) + |
| ALL-Train<br>Apply Changes<br>Up<br>Up<br>ass Name                                                 | Reset Pasitio     | 010 Num<br>0101                                                                       | ALL-Indep                                          | Experiment<br>ALI-Train1                                                              | AML-indep               | ) + |
| ALL=Train<br>Apply Changes<br>Up<br>ass Name<br>L=Train<br>L=Train                                 | Reset Pasitio     | AML=Train                                                                             | ALL-Indep                                          | Experiment<br>ALL-Train[]                                                             | AML-indep               | ) - |
| ALL-Train<br>Apply Changes<br>Up<br>Up<br>L-Train<br>L-Train                                       | Reset Positio     | 010 Num<br>0 (0)<br>1 (0)<br>2 (0)<br>2 (0)                                           | ALL-Indep                                          | Experiment<br>ALL-Train[1<br>ALL-Train]2<br>ALL-Train[3                               | AML-Indep               | ) ► |
| ALL=Train<br>Apply Changes<br>Up<br>Up<br>ass Name<br>L=Train<br>L=Train<br>L=Train<br>L=Train     | Reset Pasitio     | AML=Train<br>0 (0)<br>1 (0)<br>2 (0)<br>3 (0)                                         | ALL-Indep<br>New Num<br>0<br>1<br>2<br>3           | Experiment<br>ALL-Train[1<br>ALL-Train]2<br>ALL-Train[4                               | AML-Indep               |     |
| ALL-Train<br>Apply Changes<br>Up<br>ass Name<br>L=Train<br>L=Train<br>L=Train<br>L=Train           | Reset Positio     | AML-Train<br>01d Num<br>0(0)<br>1(0)<br>2(0)<br>3(0)<br>4(0)                          | ALL-Indep<br>New Num<br>0<br>1<br>2<br>3<br>4      | Experiment<br>ALL-Train[1<br>ALL-Train]3<br>ALL-Train[3<br>ALL-Train]4<br>ALL-Train[5 | AML-Indep               | ) ► |
| Atti-Train<br>Apply Changes<br>SS Name<br>Le Train<br>Le Train<br>Le Train<br>Le Train<br>Le Train | Reset Pasitio     | AML-Train<br>0 Old Num<br>0 (0)<br>1 (0)<br>1 (0)<br>2 (0)<br>3 (0)<br>4 (0)<br>5 (0) | ALL-Indep<br>New Num<br>0<br>1<br>2<br>3<br>4<br>5 | Experiment<br>ALL-Train[2<br>ALL-Train]2<br>ALL-Train]3<br>ALL-Train]4<br>ALL-Train[6 | AML-Indep               |     |

Figure 15

To invert the position of the two classes, you can for example, drag the "ALL-Indep" class (Green box) to its new position as shown in the following picture.



Figure 16

|                                                                                                 |                | M                                                                    | aster                            |                                                                                      |                     |       |
|-------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|---------------------|-------|
| Log2 activ                                                                                      | rity scale: 📘  |                                                                      |                                  |                                                                                      | N/A                 | Find  |
| Filter Reorder                                                                                  | ( 8.0]         |                                                                      | (-1.1 +1.)                       | 1)                                                                                   | [+8.0 )             |       |
| Cross-val Train/Te                                                                              | st X           | 0                                                                    | 7.10 p                           | xI                                                                                   |                     |       |
|                                                                                                 | [n. 11.1.]     |                                                                      | 6 Pr 01                          |                                                                                      | ALL T 07            |       |
|                                                                                                 | Remove Link    | Join Link                                                            | Spirt Class                      | Lia                                                                                  | ss:ALL-Train, 27 sa | mpies |
|                                                                                                 | -              |                                                                      |                                  |                                                                                      |                     |       |
| Oll-Train                                                                                       |                | Ullishden                                                            | ſ                                | AMI - Train                                                                          | AMI -Indep          | 1     |
| ALC-IT OIL                                                                                      |                | Accentuep                                                            |                                  | AND TRAIN                                                                            | a suc-indep         |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
|                                                                                                 |                |                                                                      |                                  |                                                                                      |                     |       |
| ALL-Train                                                                                       |                | ALL Indep                                                            | ,                                | AML-Train                                                                            | AML-Indep           |       |
| ALL-Train                                                                                       |                | ALL-Indep                                                            |                                  | AML-Train                                                                            | AML-Indep           |       |
| ALL-Train                                                                                       |                | ALL-Indep                                                            | ,                                | AML-Train                                                                            | AML-Indep           |       |
| ALL-Train<br>Apply Changes                                                                      | Reset Position | ALL Indep                                                            | ,                                | AML-Train                                                                            | AML-Indep           |       |
| ALL-Train<br>Apply Changes                                                                      | Reset Position | ALL-Indep                                                            | ,                                | AML-Train                                                                            | AML-Indep           |       |
| ALL-Train<br>Apply Changes                                                                      | Reset Position | ALL-Indep                                                            | ,                                | AML-Train                                                                            | AML-Indep           | ),    |
| ALL-Train<br>Apply Changes                                                                      | Reset Position | All-Indep                                                            | ,<br>                            | AML-Train                                                                            | AML-Indep           |       |
| ALL-Train<br>Apply Changes                                                                      | Reset Position | ALL-Indep                                                            |                                  | AML-Train                                                                            | AML-Indep           | ).    |
| All-Train<br>Apply Changes                                                                      | Reset Position | ALL-Indep                                                            |                                  | AML-Train                                                                            | ML-Indep            | )•    |
| ALL-Train Apply Changes Up Up Lass Name Lass Changes                                            | Reset Position | 0ld Num                                                              | New Num                          | AML-Train                                                                            | AML-Indep           | )•    |
| Att-train Apply Changes Up Up Up Ls rain Ls rain Ls rain                                        | Reset Position | Old Num                                                              | New Num                          | AML-Train<br>Experiment<br>ALL-Train(1                                               | AML-Indep           | ).    |
| ALL=Troin<br>Apply Changes<br>Up Up<br>Lass Name<br>Lls Trein<br>Lls Trein                      | Reset Position | 01d Num<br>0101                                                      | New Num<br>0                     | AML-Train<br>Experiment<br>ALL-Train[1<br>ALL-Train]2                                | AML-Indep           | ),    |
| Apply Changes<br>Up<br>Us<br>Ass Name<br>LL Train<br>LL Train                                   | Reset Position | 010 Num<br>0101<br>1100<br>2101                                      | New Num 0 1 2                    | AML-Train<br>Experiment<br>ALL-Train[1<br>ALL-Train]3                                | AML-Indep           | ),    |
| ALL=Train<br>Apply Changes<br>Up<br>Lass Name<br>LL=Train<br>LL=Train<br>LL=Train               | Reset Position | 0101 Num<br>0101 0101<br>0101<br>0101<br>0101<br>0101<br>0101<br>010 | New Num<br>0<br>1<br>2<br>3      | AML-Train<br>ALL-Train1<br>ALL-Train12<br>ALL-Train14<br>ALL-Train14                 | AML-Indep           | ).    |
| Att-Train<br>Apply Changes<br>Up<br>Up<br>Lass Name<br>L-Train<br>L-Train<br>L-Train<br>L-Train | Reset Position | 010 Num<br>0101 101<br>2101<br>3101<br>4101                          | New Num<br>0<br>1<br>2<br>3<br>4 | AML-Train<br>ALL-Train11<br>ALL-Train13<br>ALL-Train13<br>ALL-Train15<br>ALL-Train15 | MI-indep            | ),    |

You can now click on the "Apply changes" button to validate the modifications. You will obtain the following figure.

Figure 17

Exit the reorder mode by clicking once more on the "Reorder" button. We now have the classes in this order:

- ALL-Train
- ALL-Indep
- AML-Train
- AML-Indep

We can try a cross-validation by clicking on the "Cross-Val" button. Choose the parameters in the Edit Parameters Box to match the following figure.

| am                           | ClassMarker paramete      | rs            |
|------------------------------|---------------------------|---------------|
| Double click on one          | item to change its value. |               |
| ? ArrayMine                  | er Parameters             |               |
| Items                        | Current value             | Newvalue      |
| Maximum number of markers pe | 20                        | 20            |
| Number of markers per couple | 20                        | 20            |
| Allow multi-class markers    | No                        | No            |
| Use k–NN classification      | No                        | No            |
| ✓ 0k                         | 🖡 Reset 🔵 🔗 C             | ancel 🕐 Abort |

### Figure 18

Click on "Ok", you will then obtain the following result.

| 0      | 0 0                       | ArrayMine            | r2 Main graphic     | window              |                  |            |
|--------|---------------------------|----------------------|---------------------|---------------------|------------------|------------|
|        |                           | Ma                   | ster Result 1       |                     |                  |            |
| Close  | e   Inn2 activity scale:  |                      |                     |                     |                  | Find       |
|        | - coge activity scale.    | 8.01                 |                     |                     |                  | TING       |
| f      |                           | × 🔵                  | 710 ml              |                     | 12.00            |            |
| 261 45 | coloring schellie         |                      | 7.10 pxi            |                     | 12.00 p          |            |
| Heat   | Curves 3D                 | Info 🗹 Show          | r unused 📄 Showr as | signed Class:ALL-T  | rain, 27 samples |            |
| ×      | × × × × × ×               | × ××× ×              | ×× ×                | ~ ~~ ~~             | ××               |            |
| 1 10   | D O Size 20 Classif ALL - | Train                |                     |                     |                  | 4          |
|        |                           |                      |                     |                     |                  | 1          |
|        |                           |                      |                     |                     | 0.82             | ¥94        |
|        |                           |                      |                     |                     | 0.52             | HG         |
|        |                           |                      |                     |                     | 0.79             | U81        |
|        |                           |                      |                     |                     | 0.71             | M84        |
|        |                           |                      |                     |                     | 0.67             | M3:        |
|        |                           |                      |                     |                     | 0.65             | <b>S20</b> |
|        |                           |                      |                     |                     | 0.64             | Z23        |
|        |                           |                      |                     |                     | 0.64             | 248        |
|        |                           |                      |                     |                     | 0.63             | L4/        |
|        |                           |                      |                     |                     | 0.62             | ML         |
|        |                           |                      |                     | ····                | 0.62             | M2:        |
|        |                           |                      |                     |                     | 0.62             | 1120       |
|        |                           |                      |                     |                     | 0.61             | 793        |
|        |                           |                      |                     |                     | 0.61             | - ĨĨĨ      |
|        |                           |                      |                     |                     | 0.01             |            |
| V A    | 4                         |                      |                     |                     |                  | ) ► E      |
| Mark   | kers Experiments          | Analysis Cross-va    | Fitness 44.073      | Warkers [ 20/20 ] M | lultiClass NO    |            |
| Num    | Name                      | Description          | Class               | Additional Class    | Signal / Noise   | Multi 🧯    |
| 1      | X94232_at                 | Novel T-cell activat | ion ALL-Train       |                     | 0.816            | 1          |
| 2      | HG1322-HT5143_s_at        | Small Nuclear Ribor  | nucleALL-Train      |                     | 0.792            |            |
| 3      | U81001 at                 | SNRPN mRNA, 3' UT    | R. paAUL-Thein      |                     | 0.787            |            |
| 4      | M86400_at                 | VMHAZ Tyrosine 3-    | mon 011 -Train      |                     | 0.709            | - 6        |
| 5      | M31303 ma1 at             | Oncoprotein 18 (Or   | 18) All -Irain      |                     | 0.673            |            |
| 6      | \$50222 at                | WP_T1                | ALL Train           |                     | 0.652            |            |
|        | 330223_0X                 | 110/07/14            | ALC: UNDER COMPANY  |                     | 0.052            |            |

Figure 19

As shown in the previous figure, there are many cross-validation failures, but in fact this is normal because we ask the algorithm to differentiate four classes, where there are obviously only two (ALL and AML).

You can visualize how the classes are mixed by clicking on the "Show Assigned" check box, to realize that ClassMarker mixed the "ALL-Indep" set with the "ALL-Train" set and the "AML-Indep" set with the "AML-Train" set, as shown in the following figure.



#### Figure 20

We will now perform a "Train and Test" analysis. Return to the master tab by clicking on its name. Select the first class "ALL-Train" as shown in the following figure. You can also select a class with help of the "Left" and "Right" keys.



Figure 21

Click on the "T" button located near the "Used" check button. The whole class will be colored in light blue, meaning that it becomes a "Train" class as shown in the following figure.



Figure 22

Repeat the previous step for the third class named "AML-Train". You will obtain the following figure.



Figure 23

Click on the "Train/Test button to start the analysis. Reply "Yes" to the question "Cross-Validate the train set". You will obtain the following result.



Figure 24

The markers are obtained by using only the two blue classes (Train classes). There was only one cross-validation failure, in the first class. The samples in the other two classes (gray) are classified by voting. To view their corresponding assigned class, simply click on the "Show Assigned" check box and you will obtain the next figure.



Figure 25

There is only one misclassified sample in the test classes, as shown in the previous figure.